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False Vacuum Decay with Gravity in a Critical Case
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The vacuum decay in a de Sitter universe is studied for the class of effective inflaton
potentials that curvature at the top is less than as well as greater than a critical value
determined previously. By comparing the actions of the Hawking - Moss instanton and
the Coleman - de Luccia instanton(s) the mode of vacuum decay is determined in this
critical situation.
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1. INTRODUCTION

The idea of vacuum decay in a de Sitter universe was developed by Coleman
and de Luccia in Coleman and de Luccia (1980) and plays an important role in the
cosmological inflationary scenario. It is considered as a mechanism of transition to
a Friedman universe in old inflation (Guth, 1981) and emerges also in the scenario
of open inflation (Bucher et al., 1995; Linde and Mezhlumian, 1995; Kofman
et al., 1997, 1994).

We consider single scalar field � with self-interaction given by the nonnega-
tive function V (�) - effective potential - that has two nondegenerate minima, one
of them strictly positive (false vacuum) and second one equal to zero (true vac-
uum). These vacua are supposed to be separated by a finite potential barrier. Let V

reach its local maximum VM at �M . Furthermore, let us denote by H (�) the Hub-
ble parameter corresponding to the energy-density V (�): H (�) = √

8πV (�)/3,
especially HM = √

8πVM/3. In order to study quantum transition of the inflaton,
in fact, one does not need to have the potential described above, namely the po-
tential may have no local minima (vacua), since the existence of potential barrier
is sufficient for this purpose. Supposing O(4) symmetry supplemented by the
regularity of the solution we get the following (Euclidean) equations of motion
and boundary conditions for Euclidean version of the scale parameter a and the
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inflaton �

a′′ = −C
(
�′2 + V

)
a, �′′ + 3

a′

a
�′ = V ′

� (1)

a(0) = 0, a′(0) = 1, �′(0) = �′ (τf

) = 0, (2)

where the constant C equals 8π/3 and τf > 0 is defined by the equation a(τf ) = 0.
For any suitable potential there exists a trivial solution of the above problem that
reads

�HM = �M, aHM = H−1
M sin (HMτ ) , with τf = π

HM

(3)

and is called the Hawking-Moss instanton (Hawking and Moss, 1982). This in-
stanton mediates the vacuum decay in such a way that the inflaton jumps up to the
top of the barrier in the horizon-size domain and afterwards the inflaton leaves (by
quantum or thermal fluctuations) the unstable equilibrium and evolves classically
to the true vacuum. However, under some additional conditions, the problem (1)
and (2) has also nontrivial solutions (with variable �) called Coleman-de Luccia
(CdL) instantons (or bounces) (Coleman and de Luccia, 1980). Following the
ideas of paper (Balek and Demetrian, 2005) (see also Tanaka, 1999 and recently
Hackworth and Weinberg, 2005) and Weinberg (2005) CdL instantons can be
characterized by how many times the inflaton crosses the top of the barrier. We
talk about the CdL instanton of the lth order if the inflaton crosses the top l-times.

The boundary conditions (2) provide the action of a CdL instanton (that
follows from the general Einstein-Hilbert action) to be finite. The action is a
very important quantity for an instanton since it determines the probability of the
vacuum decay per unit space-time volume in the form exp(−S) . This quantity
can be transformed, according to (Balek and Demetrian, 2005), into the following
simple form

S = 2π2
∫ τf

0

[(
1

2
�′2 + V

)
a2 − 1

C

(
aa′2 + 1

)]
a dτ = −4π2

3C

∫ τf

0
a dτ. (4)

It is easy to find that the action of the Hawking - Moss instanton is given by

SHM = − π

H 2
M

. (5)

2. NEAR-TO-LIMIT CdL INSTANTON OF THE FIRST
ORDER AND ITS ACTION

As it was sketched in Jensen and Steinhardt (1984) and finally proved in
Balek and Demetrian (2004) the CdL instanton necessarily exists for potentials
with V ′′

M/H 2
M < −4 and may exist if V ′′/H 2 < −4 for some value of � in the
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potential barrier. If the fraction V ′′
M/H 2

M approaches one of the values −l(l +
3), l = 1, 2, 3 . . ., the near-to-limit CdL instanton (that approaches necessarily
existing Hawking-Moss instanton) may exist. If V ′′

M/H 2
M < −l(l + 3) then the

instanton of lth order necessarily exists. Our task is to compute the difference
between the action of the near-to-limit CdL instanton of the first order and the
action of the related Hawking-Moss instanton. This task has been considered in
Balek and Demetrian (2005), but our treatment will be different. By making use of
the re-scaled Euclidean time x = HMτ and the shifted inflaton field y = y(x) =
�(τ (x)) − �M we rewrite equations (1) in to the form

a′′ = −C

(
y ′2 + V

H 2
M

)
a, y ′′ + 3

a′

a
y ′ = V ′

y

H 2
M

. (6)

Since now the prime denotes differentiation with respect to x. Introducing the
expansion of the relevant quantities, including the dimensionless Euclidean action

σ = −3CH 2
M

4π2
S, (σHM = 2)

into the series in the inflaton amplitude k

y(x) =
∑

knun(x),− V ′′
M

H 2
M

= 4 +
∑

kn�n,

a(x) = CH−1
M

∑
knvn(x), σ = 2 +

∑
knwn (7)

and expanding the potential into the powers of y we replace the nonlinear
equations (6) by the infinite system of linear equations

u′′
n(x) + 3

cos(x)

sin(x)
u′

n(x) + 4un(x) = Un(x),

v′′
n(x) + vn(x) = Vn(x) sin(x) (8)

in which the functions Un and Vn can be computed order by order if we know
the functions un−1, un−2, . . . , u0. Functions un and vn are defined on the interval
[0, x

(n)
f ], where x

(n)
f is defined as the point in which the scale factor a computed

up to the nth order in k vanishes. The value of the functions vn and v′
n must vanish

at x = 0 (this follows from (2)) and un must be regular. We know that u0 = 0,
v0 = sin (x) and u1 = cos(x). Furthermore, V ′

M = 0 implies that v1 vanishes. The
next nonzero term in the k-expansion of a is given by v2 that must obey the
following equation:

v′′
2 + v2 = −1

4
[sin(x) − 3 sin(3x)] ,
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which solution reads

v2(x) = 1

4

[
5

8
sin(x) + 1

2
x cos(x) − 3

8
sin(3x)

]
. (9)

Solving equation v0(x) + k2v2(x) = 0 with the accuracy up to the order k2 and
supposing the solution is close x = π , we find that the shifted right end-point is
given by

x
(2)
f = π − 1

8
Cπk2 ≡ π + δ(2).

Knowing v2 we can compute the contribution of the order k2 to the difference
between the actions of CdL and Hawking - Moss instanton that is defined by
Eqs. (4) and (7). The result is: w2 = ∫ π

0 v2(x) dx = 0. This means that we cannot
distinguish between the action of a near-to-limit CdL instanton and the related
Hawking - Moss instanton in the second order of inflaton amplitude and we must
continue our computations. Equation for u2 reads

u′′
2 + 3

cos(x)

sin(x)
u′

2 + 4u2 = 1

2

V ′′′
M

H 2
M

cos2(x)

and its regular solution is

u2(x) = 1

24

V ′′′
M

H 2
M

[1 − 2 cos2(x)]. (10)

Now, we can derive equation for v3 and its solution

v′′
3 + v3 = V ′′′

M

48H 2
M

[2 sin(2x) − 5 sin(4x)] ⇒ v3

= − V ′′′
M

72H 2
M

[
sin(2x) − 1

2
sin(4x)

]
. (11)

There is no shift of the right end point xf since v3(π ) = 0, and we easily find that
the k3-contribution to the action (w3) equals zero. This result forces us to continue
up to the fourth order in k. The shift of the right end point xf with respect to
π (which is actually of the order k2) must be taken under consideration in the
equation for u3. Introducing new a independent variable

X = πx

π + δ(2)
= x

(
1 + 1

8
Ck2 + o(k2)

)
≡ Kx

we derive the equation for u3 of the form

d2u3 (X)

dX2
+ 3

cos (X)

sin (X)

du3 (X)

dX
− V ′′

M

H 2
M

u3 (X)
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=
[

1

K2

(
4 + V ′′

M

H 2
M

)
+ 13

4
C + 1

24

(
V ′′′

M

H 2
M

)2
]

cos (X)

+
[

1

6

V ′′′′
M

H 2
M

− 9

4
C − 1

12

(
V ′′′

M

H 2
M

)2
]

cos3 (X)

≡ A cos (X) + B cos3 (X) .

The only regular
(

du3(0)
dX

= du3(π)
dX

= 0
)

solution to this equation is given by:
u3 (X) = β cos3 (X), with the constant β to be determined from the system of
linear equation

6β = A, −14β = B ⇒ β = − 1

14

{
1

6

V ′′′′
M

H 2
M

− 9

4
C − 1

12

(
V ′′′

M

H 2
M

)2
}

.

However, the fixation of β is only a supplementary consequence of previous system
of linear equations, since their main purpose is to determine the value of k2 as a
function of A and B. Namely, we obtain from them the following “quantization
rule” for k2 as a function of 4 + V ′′

M/H 2
M

k2 = −
4 + V ′′

M

H 2
M

2
7

[
8C + 1

48

(
V ′′′

M

H 2
M

)2
+ 1

4
V ′′′′

M

H 2
M

] . (12)

If the denominator of the fraction on the right hand side is positive then we
have, for small negative numerator a near-to-limit CdL instanton of the first order
whose inflaton amplitude is given by (12). We will return to the case when the
denominator is negative later. Now, let us concentrate on computation of the action
of this near-to-limit CdL instanton. Performing some tedious algebra one derives
equation for v4 of the form

v′′
4 + v4 = [ℵ0 + ℵ2 cos2(x) + ℵ4 cos4(x)

]
sin(x),

where we have introduced the parameters

ℵ0 = −15

16
C + 1

288

(
V ′′′

M

H 2
M

)2

ℵ2 = 159

224
C − 2

21

(
V ′′′

M

H 2
M

)2

+ 3

28

V ′′′′
M

H 2
M

ℵ4 = 27

56
C + 1

7

(
V ′′′

M

H 2
M

)2

− 9

56

V ′′′′
M

H 2
M

.
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And finally, the solution is

v4 = 1

192
{−12(8ℵ0 + 2ℵ2 + ℵ4)x cos(x)

+ sin(x)[96ℵ0 + 36ℵ2 + 23ℵ4 − 2(6ℵ2 + 5ℵ4) cos(2x)

− 2ℵ4 cos(4x)]}. (13)

We finish the computations with a nonzero contribution to the action of a
surprisingly simple form

�S(4) ≡ −4π2k4w4

3CH 2
M

= 2π2

15

k2

H 2
M

(
4 + V ′′

M

H 2
M

)
. (14)

Formula (14) tells us that a near-to-limit CdL instanton of the first order has, in
the case V ′′

M/H 2
M < −4, less action than the related Hawking - Moss instanton

and therefore, if no other instantons exist, it is the instanton governing the false
vacuum decay.

Let us demonstrate the power of the formulas (12) and (14) on a concrete
example. We will consider the often mentioned quartic potential

V (�) = 1

2
�2 − 1

3
δ�3 + 1

4
λ�4, (15)

where δ and λ are supposed to be positive. The non-negativeness of the potential
and the existence of the false vacuum (the true vacuum is located at � = 0) require
that the δ parameter belongs to the interval (δm, δM ), where δm = 2

√
λ, δM =

3
√

λ/2 ≈ 1.06δm. The positions of the false vacuum (�f v) and of the top of the
barrier are given by

�f v = δ

2λ
+

√
δ2

4λ2
− 1

λ
=

√
1 − Z2

(1 − Z)
√

λ
,

�M = δ

2λ
−

√
δ2

4λ2
− 1

λ
=

√
1 − Z2

(1 + Z)
√

λ
,

where

Z =
√

1 − 4λ

δ2
, Z ∈

[
0,

1

3

]
.

The potential (15) in the (Z, λ) parametrization has the form

V = 1

2
�2 − 2

3

√
λ√

1 − Z2
�3 + 1

4
λ�4.
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We are interested in the quantities

H 2
M ≡ 8π

3
VM = 2π

9λ

(1 − Z) (1 + 3Z)

(1 + Z)2
, V ′′

M = − 2Z

1 + Z
.

From these expressions it follows that the effective curvature of the potential at its
top is given by

V ′′
M

H 2
M

= −9λ

π

Z(1 + Z)

(1 − Z) (1 + 3Z)
(16)

and is a monotonically increasing function of Z. If we denote by λS the value of
λ at which (at given Z) V ′′

M/H 2
M = −4, then

λS = 4π

9

(1 − Z) (1 + 3Z)

Z(1 + Z)
.

It will be useful to express the fractions V ′′′
M /H 2

M and V ′′′′
M /H 2

M entering the for-
mulae (12) and (14) in terms of the parameters of the quartic potential. After some
algebra one finds out that

V ′′′
M

H 2
M

= −9λ3/2

2π

(1 + Z)2

(1 − Z)
√

1 − Z2
, and

V ′′′′
M

H 2
M

= 27λ2

π

(1 + Z)2

(1 − Z) (1 + 3Z)

and by using the relation (16) one gets the dependence of the fractions in question
on the effective curvature V ′′

M/H 2
M of the potential at its top.

V ′′′
M

H 2
M

=
√

π

6

(
1 + Z

1 − Z

)1/2 (
1

Z
+ 3

)3/2 (
− V ′′

M

H 2
M

)3/2

,

V ′′′′
M

H 2
M

= π

3

(1 − Z) (1 + 3Z)

Z2

(
V ′′

M

H 2
M

)2

. (17)

Now, we are ready to compare the predictions of the formulas (12) and (14) with
the numerical solutions of exact instanton Equation (6). In order to perform the
numerical analysis of the instanton equations we will fix the parameter Z of the
quartic potential to have the value corresponding to central point between the case
when the false vacuum energy density Vf v is negligible in comparison to VM

(this situation corresponds to the thin-wall approximation considered in Coleman
and de Luccia (1980) and is analyzed in part numerically in Samuel and Hiscock
(1991)), and the case when the false vacuum disappears. Since the energy density
in false vacuum is given by

Vf v = 1

12λ

(1 + Z) (1 − 3Z)

(1 − Z)2
,
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Fig. 1. The prediction of the analytical formula (12) for the instanton width in � direction (lower,
doted, line) is compared with the numerical computations of this quantity in the left graph. The
range of −V ′′

M/H 2
M is taken (Linde and Mezhlumian, 1995; Demetrian, 2004); at the value 4 the

CdL instanton of the first order appears and at the value approximately 10 the second order CdL
instantons appear (Balek and Demetrian, 2004; Demetrian, 2004). Finally, the right graph shows the
theoretical dependence of the first-order CdL instanton action according to (14) (lower, doted, line)
together with numerically obtained values of this quantity.

the fraction Vf v/VM , that depends on Z only, equals 1/2 if
(

1 + Z

1 − Z

)3 1 − 3Z

1 + 3Z
= 1

2
with Z ∈ [0, 1/3].

This equation determines Z as

Z ≈ 0.278 . (18)

We have solved numerically the exact instanton equations with this choice of the
parameter Z and compared these results with the approximative formulae (12) and
(14), see Fig. 1.

3. CdL INSTANTON(S) OF THE FIRST ORDER IN THE CASE
WITH SUBCRITICAL VALUE OF THE FOURTH DERIVATIVE
OF THE EFFECTIVE POTENTIAL AT ITS TOP

Let us consider an effective potential which has, for a suitable choice of
parameters, such a shape that the denominator in the formula (12) is negative and
at the same time it is possible to change continuously the sign of the nominator.
If the sign of the term −4 − V ′′

M/H 2
M is positive, then there must be at least

one CdL instanton of the first order, as discussed previously. But what happens
when we pass through zero to negative values of −4 − V ′′

M/H 2
M , keeping [8C +

1
48 ( V ′′′

M

H 2
M

)2 + 1
4

V ′′′′
M

H 2
M

] a negative constant? The formula (12) ensures that we have

the near-to-limit CdL instantons in the region with −VM/H 2
M (a little bit) less

than 4. By the continuity argument, this set of instantons must be lined-up to the
“overcritical” instantons existing for −V ′′

M/H 2
M > 4. In order to investigate the

structure of the instanton solutions it is helpful to use the method of representation
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of a CdL instanton proposed by Tanaka in Tanaka (1999). Let us consider the
two dimensional “phase” plane (	,�), where � stands for some value (to be
determined later) of the inflaton and 	 stands for some value of the conjugated
momentum 2π2a3�′. For a given V we can start the evolution, using to the
Euclidean equations of motion (1), (2) for a and �, with any initial value �i of
the inflaton and we will come, in some finite Euclidean time τ̄ (�i), to the point
at which a reaches its maximum. Let �+

i be an arbitrary value of � located to the
right of �M . Taking this �+

i as the initial value for the system (1), (2) we obtain
the point (	̄+, �̄+) ≡ (	(τ̄ ),�(τ̄ )), and varying �+

i we can draw the curve

C+ = {(	̄+, �̄+), �+
i > �M}.

Analogically, varying the initial value of the inflaton �−
i located to the left of

�M we construct the curve C−. Intersections of the curves C+ and C− correspond
to the CdL instantons. (The curve C+ does not intersect itself and the same holds
for C−).

The existence of two CdL instantons of the first order for given −V ′′
M/H 2

M

opens the question which instanton governs the vacuum decay. Let us investigate a
concrete realization of the kind of vacuum decay described above. In the appendix
it is shown that for a class of generalizations of the quartic potential we cannot
obtain negative value of the fourth derivative of the potential at �M if we require
that the potential contains both the false and true vacuum. Let us relax these
requirements and consider the potential

V (�) = 3

8π
− 1

2
g2�

2 − 1

24
g4�

4 , (19)

where g2, g4 are positive constants. The top of the potential is at �M = 0 and

V ′′
M = −g2, H 2

M = 1 , − V ′′
M

H 2
M

= g2.

The choice

g4 = 300

ensures that

8C + 1

48

(
V ′′′

M

H 2
M

)2

+ 1

4

V ′′′′
M

H 2
M

= 8C − 1

4
g4

is negative. We have performed numerical analysis of the structure of CdL instan-
ton solutions in this theory for values of −V ′′

M/H 2
M close to 4 from both sides. The

structure of the instanton solution is fully characterized by the Tanaka’s curves C.
Since the potential (19) is an even function of � we need only one of the curves
C+ and C− (C− is the mirror image of C+ with respect to vertical axis in the (	̄, �̄)
plane). The instanton solutions are determined by the points at which C+ (or C−)
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Fig. 2. The Tanaka’s curves C+ (i.e. 	̄+ versus �̄+) in the theory (19) with g4 = 300. The graphs
are plotted, from the left to the right and from top to bottom, for the values of −V ′′

M/H 2
M =

3.96, 3.98, 4.00 and 4.10 respectively.

crosses the vertical axis. The Tanaka’s curves C+ with −V ′′
M/H 2

M close to 4 and
g4 = 300 for the theory (19) are shown on the graphs in Fig. 2. These graphs
tell us that for V ′′

M/H 2
M close above 4 there is only one (no near-to-limit) CdL

instanton, for −V ′′
M/H 2

M = 4 lying between approximately 3.966 and 4 there are
two CdL instantons, and for −V ′′

M/H 2
M less than approximately 3.966 there are no

CdL instantons. Finally, the structure of the instanton solutions in the theory (19)
and the −V ′′

M/H 2
M -dependence of the instanton action are shown in Fig. 3.
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Fig. 3. Left graph: the initial value of the CdL instanton solution versus −V ′′
M/H 2

M in the theory
(19) with g4 = 300. There are two bifurcation points in the parameter −V ′′

M/H 2
M for solutions of

the instanton equations. At −V ′′
M/H 2

M = 4 the number of (nontrivial, i.e. no-HM-instanton) solutions
changes from 1 to 2, and at a value approximately 3.966 the number of CdL instantons changes
from 0 to 2. Right graph: the difference �S between the action of CdL and HM intanton (the action
of the HM instanton is normalized to 2). Lower curve describes the subcritical near-to-limit CdL
instanton and upper curve corresponds to the no-near-to-limit CdL instanton. These curves merge in
the point −V ′′

M/H 2
M ≈ 3.966 mentioned above. For −V ′′

M/H 2
M

>
≈ 3.975 the no-near-to-limit instanton

governs the vacuum decay, for the values below this the vacuum decay is governed by the HM
instanton.

4. CONCLUSION

The false vacuum decay in a de Sitter universe has been investigated for
near-to-critical values of the curvature of the effective potential. An approximate
formula for the Euclidean action of the near-to-limit CdL instanton has been
found by expanding the inflaton and the metric into to powers of the inflaton
in a different way than in our previous work (Balek and Demetrian, 2005). We
have focused on the case when the fourth derivative of the effective potential at
its top has a subcritical value and −V ′′

M/H 2
M is running from both sides around

its critical value 4. We conclude that there is a range of the parameter −V ′′
M/H 2

M

less than 4 for which at least two CdL instantons exist. One of them is the near-
to-limit instanton that can be described by the approximate formulas, together
with its action, derived in the first part of the paper. The second instanton must
exist because of the necessity to disconnect the energy curve from the potential
when the starting point of the curve moves towards the true vacuum (Balek and
Demetrian, 2004). The near-to-limit instanton in this case mediates the vaccum
decay with a less probability than the related HM instanton. However, the vacuum
decay is not governed by the HM instanton in this case but by the no-near-to-limit
CdL instanton. On the other hand, we have shown on a concrete example that for
sufficiently small values of −V ′′

M/H 2
M the HM instanton has the least action from

the three instantons in question and is to be considered as the instanton governing
the vacuum decay.
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